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A theoretical study of the highest bound states and some of the lowest energy resonance states of water in its
ground electronic state, % 1'A’, and with zero total angular momentum, is presented. The majority of our
calculations correspond to the even symmetry block with respect to hydrogen atom exchange. An accurate ab
initio based potential surface is employed. The Lanczos method, applied to a large grid representation of the
Hamiltonian, is shown to be a straightforward method for obtaining the bound state energy levels. Selected
eigenfunctions are also determined and several of those near the dissociation threshold are quite extended.
Resonance states just above the dissociation threshold are characterized with the aid of damped Chebyshev
iterations. Among the resonances observed are those with hyperspherical and local mode character.

I. Introduction of determining the relevant properties (e.g., eigenvalues) of the
Hamiltonian operator in the representation. There are numerous
theoretical approaches to obtaining excited ro-vibrational
state$8.917 One approach, as in the work of Carrington and
co-workers?? is to use relatively primitive and large grid or
discrete variable representations (DVR&)oupled with an

> S N i iterative matrix eigenvalue method such as the Lanczos
Theoretical methods for the determination of vibratioatation method2%11 This primitive grid approach can, by its egalitarian

stalltesl are nowh_su;?mently gdvanced fthat 'tv'\? possible 10 4t re regarding the problem representation, describe states that
calculate many highly excited states o vya‘te‘l. e present are extremely exited and distorted. However the matrices
the results of detailed theoretical calculations on the nature of ;

he bound and ; h involved are large and hence the need of an iterative matrix
the bound and resonance states of water near the .C“ 1 eigenvalue method. A recent comparative study of bound state
threshold that we hope will motivate both future theoretical and

h ical K methods in relation to determining all the vibrational states of
t eoretlpa Work. . HOCI confirms this point? (See also the interesting comparative
Two iterative techniques, the Lanczos methdd for the

> study in ref 9.) Such approaches can require additional effort
bound states and damped Chebyshev iteratfotfsfor the or more sophisticated considerations to obtain eigenfunctions.

resonance states, are applied to the accurate, ab initio basedgqe refs 2622 for some interesting recent developments on
H,O potential surface of Ho et dlMussa and Tennyséfi inferring eigenstate information as well. Section IIA outlines
previously presented an impressive quantum study of many oyr pasic representation of the problem which is common to
rovibrational states employing the same potential surface. poth our bound state and resonance work, section I1B outlines
Another related work on water is a detailed study of 2D and phow the bound states were determined (Lanczos method), and

3D bound and resonance states, employing an empirical potentiakection 11C outlines how the resonance states were determined
surface, by Hartke et &b By converging and analyzing the  (gamped Chebyshev iterations).

highest bound states and 'PW"yif‘g resonances, our work A. Representation. We performed bound state (Lanczos)
comple_ments an_d extends this earlier work. i _calculations within both Jacobi and Radau coordihaté

Section Il outlines our methods and computational details, rgnresentations. Within each representation we considered a
section Ill discusses the bound and resonance state results, angiety of grid and basis set sizes. Jacobi and Radau coordinates
section IV concludes. lead to very similad = 0 three-atom Hamiltonians. The Jacobi

coordinates employed afe r, andy, whereR is the distance
Il. Methods from O to the H center of mass;, is the H internuclear distance,

The problems of determining bound and resonance statesandy Is the qngle bgtween the vectors associated Rindr.
involve similar considerations. One must decide on the repre- Radau coordinates involve t\(vo.dlstanéesandRzand an angle
sentation, i.e., what coordinate system and basis set or grids® that can be taken to be similar to (but not exactly the same
are to be employed. One must also decide on the actual metho@s) the two OH bond dlstanc_:es and assomateql bending #ngle.

One expects a Radau coordinates representation would be more

T Part of the special issue “William H. Miller Festschrift”. ComPUtationa"y effiqient (eg. reqUire. smaller Hamiltonian
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The ground electronic state of water,®{X=1!A"), is of
fundamental interest. Experiments can now access highly
vibrationally excited states of watémnd the low-lying reso-
nance states may also prove to be acces3iBletential energy
surfaces based on high-quality ab initio ddtare also available.
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TABLE 1: Grid 2 and Related Details

Bound State Calculations

Jacobi Coordinatesx(r, v)

J-1 RMin=0 & RMax=12.5g Ng= 179
rmn=0.5ga rmax=135 g N, =179
j=0,2,..,78 (40 even exchange
symmetry Legendre polynomials in cpp

J-2: RMn =0 g Rax =145 g Nr= 209
rmn=0.5g rmax= 155 g N, = 209
j=0,2,..,98 (50 even exchange
symmetry Legendre polynomials in cpp

J-3: RN =0 g R"*=17.8 @ Nr= 255
rmn=0.5g rmax=19.0 N, = 255
j=0,2,..,118 (60 even exchange
symmetry Legendre polynomials in cpp

Radau CoordinateR(, R;, a)

R-1: RMn=0.5 & RMaxX=12 g Ni= 179
j=0,1, ..., 79 (80 Legendre polynomials
in cosa)
Resonance State Calculatiéns
J-4: RMn=0 g Rmax= 1458333 a Nr= 209
rmn=0.5g rmax=15.66666 g N; = 209

j=0,2,..,78 (40 even exchange
symmetry Legendre polynomials in cpp

2 Each grid corresponds tg = x™" 4 kAx, Ax = (xma ~ xmMn/(N, 4+ 1), x = R or r. The potential and centrifugal terms in the Hamiltonian in
all calculations are also cut off at 0.44 au (96 569 &mmelative to the bottom of the potential wetlAbsorption:A(r) = exp[=Cu(r — ra)?, r >
raandA(r) = 1 otherwiseC, = 0.005 a3 — 2,r,= 10 a.

however, can be either very extended and/or mixed in character.of the iterations in an economical manner involving no additional
Thus, any representation used to obtain these states will involvematrix-vector products. At any stagkl, one can form a
large, dense grids. We found that in this limit the Radau system tridiagonal matrixT with the oy as diagonal elements and the

is not significantly more advantageous than the Jacobi one. i as the nonzero off-diagonal elements. Diagonalizatiom of
Jacobi coordinates also allow one to easily impose even or oddyields estimates of the eigenvaluestf In exact arithmetic,
exchange symmetry with respect to the hydrogen atoms. (Onethe Krylov vectors generated via eq 1 are orthonormal but in
may also impose symmetry with grids based on symmetrized practice round-off errors destroy this property. This much-
Radau coordinate$:j The resonance state (damped Chebyshev) discussed aspect of the Lanczos method leads to complications,

calculations were carried out in Jacobi coordinates. e.g., multiple copies of good eigenvalues and spurious or ghost
Both iterative approaches used (sections IIB and IIC) require eigenvalues. Nonetheless, as discussed by Cullum and Wil-
repeated evaluations 6f-q, whereq is a real vector an#f is loughbyl0 one may apply checks on the eigenvaluesT ab

the corresponding Hamiltonian matrix representation. As in filter out the incorrect eigenvalues. In this work, we used the
previous workl5 the Jacobi representation is based on evenly conceptually simpler procedure of comparing sets of eigenvalues
spaced grids irR andr, and a (normalized) Legendre basis, obtained at stag® with one or more previous sets generated
Pi(cosy). The components of the vectgrare thus indexed by  at stagesM’ < M. (This procedure was also used in a
ir, ir, andj, denoting the specifii, r grid point and thgth determination of all the bound states of HO&].)

Legendre polynomial. Even or odd hydrogen exchange sym- |f ¢1is an eigenvector of th& corresponding to some good

metry corresponds to including only even or odd Legendre ejgenvalue oH, E,, the corresponding eigenvectgyof H can
polynomials in the basis. Cutoff energies are applied to both pe approximated by
the potential and centrifugal terms of the Hamiltontarfzast
Fourier sine transforms are used to evaluateRlaadr kinetic VA NS g )
energy terms, and the effect of the potential on a vector is kZl k Hk
evaluated via transformation to the correspondinggog(id
representation, multiplication by the potential points on the grid,
and back transformation to the Legendre representatidhe
bound state calculations carried out with the Radau coordinate
representation involved an almost identical treatment of the
evaluation ofH-q. See Table 1 for the details of several grid
and basis set choices we have explored.

B. Lanczos Method for the Bound States.The Lanczos
method® ! involves application of the following three-term
recursion to generate the various Krylov vectpog}

whereN is a normalization constant such thaf|v"C= 1. It is
interesting to note that i€;" = 1, then a scalar form of eq 1,
with the gk replaced byc andH replaced byE,, can be used
to generate they in eq 2. See also ref 20 for a related, but
different approach. Unfortunately, for large problems such as
the present one, it is not practical to keep all thén memory,
or even to store them all on external disk. If eigenvectors are
desired, an additional Lanczos calculation is therefore required
to regenerate they and to construct one or more selected
eigenstates according to eq 2. (If many eigenvectors are desired,
Bli1= ~Biar + (H = loy)-q, k=1,2,..M (1) more than one extra Lanczos calculation might be needed since
it may not be possible to store simultaneously many different
wherel is the identity matrix. Equation 1 is initiated with an  v".) The loss of orthogonality of the Krylov vectors during the
arbitrary, normalizedy; and 3o = 0. The real numbersy = course of the Lanczos iterations leads to some interesting
[dx/H |gxCandSk = G| H|qk-10are generated during the course properties of the approximate eigenvectors given by eq 2. For
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example, if one considers the standard deviation the wave packet is not simpkt or Hs but'®
o" = ("HV"0- B"H V') ®) f(Hg) = — ’%‘cos*le (5)

one finds that it does not uniformly decrease as the number of
Lanczos iterations M is increased. Rath#Ypscillates and the
best strategy is to monita" as one forms/" and to simply
always save thg" that leads to the smallest over the course
of the iterations. This procedure worked very well for the presen
purposes. In addition, the states obtained were verified to be
orthogonal to between 4 and 9 significant figures, which further L
confirms the overall procedure. [Note that in order to visualize C(t=kr) = Zhj cos@K) exp(—y;k/2) (6)
&

andr is an arbitrary time step that cancels out of any expression
for an observable. If the various iteratgg, k = 1, 2, ...,
consistent with eq 4, are dominated by resonances, then the
t autocorrelation functio€(t=kr) = [Gjo|qxwill be a superposi-
tion of L damped oscillatory terms

a wave function consistent with a giveR, one must construct
P (R li,COSY) = 3t Pi(COSY).]

Typically, about 40 000 Lanczos iterations were required to (In practice,L values larger than the number of resonances
convergeall the bound states, which for the largest grid and presentare usually used in order to describe background or direct
basis set considered (dimensisr8.9 x 10F) required nearly 2 features.) When damping is applied to the dynamics, this
days of computation time on a 667 MHz Compagq XP1000 (Dec- behavior is consistent with the eigenvalugf f(Hs) being
Alpha) workstation. (While obviously computationally intensive, complex numbers:

the programming of the approach is extremely straightforward.)
C. Damped Chebyshev lterations for the Resonance f = ﬁ(g _ i&) @)
States.Resonances correspond to complex energies iT'n/2 nog\n 2

of the Hamiltonian, where outgoing boundary conditions have

also been enforced. To find these complex energies, one couldWhereVn = 0. By taking the cosine of eq 7 one may relate_ the
augmentH by an optical potential and employ stabilization parameter$, andy, to the actual resonance position and width

ideas?*~26 Another approach, which is essentially what we of the original Hamiltonian:
employ here, is a spectral approach based on wave packet

propagation. Assuming that the effect of dissociation on En=i[005(9n) coshf//2) — by

interaction region dynamics is appropriately mimicked by 8

absorbing outgoing wave packet components, spectral analysis sin(6,) sinh/2)

of a correlation function can be used to obtain resonance r,= 8)
properties’?8 The main idea is that a correlation function 8

inferred from a time-evolving wave packet will then exhibit

damped oscillations, with the oscillation frequencies being

related to resonance energy positions, and the damping factor

being related to the resonance decay widti¥§ The approach

used here, based on Mandelshtam and Taylor's damped Che- n_

byshev iteratiod2-15 is in this latter spirit. ' NKZI cos0,k)d ©)
If Hs = asH + bs, with as and bs being chosen to ensure

that the eigenvalues ofis lie within [—1, 1], a damped  where the sum is over all the Chebyshev iterations.

If one has a reasonable (not necessarily exact) estimate of the
energy,E,, of some resonance, it is possible to obtain a good
Sdea of the resonance wave function by constructing

Chebyshev iteratidd~15 can be defined as This spectral approach involves inferring the resonance
parameters in eq 6, given a sequence of correlation function
O = A [-A-Q, +2Hsq), k=1,2,.. 4) points. An explicit discrete Fourier transform is the best way

of inferring the parameters, but, depending on the duration of
where the role oA is to damp away outgoing components of the correlation function sample, the uncertainties associated with
the iterates,qx, corresponding to amplitude growth in the the parameters can be large. An alternative is to treat eq 6 as a
dissociation region, thus allowing one to model the effective nonlinear fitting problem. We use the Prony metffbto

dynamics in the interaction region. Given someone sets), accomplish the required fits, in @ manner similar to that outlined
= A-Hs:q; and applies eq 4 to generate the subsequent vectorsin the Appendix of ref 28.
The damping matribA is diagonal with respect to a grid point If one assumes that thogg can be expanded in terms of a set

representation, with positive real diagonal elements that are unity of orthogonal oscillatory, decaying resonance statds then
in the interaction region and less than unity outside the it is easy to show that[@ qd= C(t=2kz) + f(k), wheref(k)
interaction region in order to absorb outgoing products and corresponds to a sum of decaying exponentials. This implies
prevent artificial reflection effect®\ effectively accomplishes  that, apart from an extr@ = 0 term in eq 6, Ay|gxand
what an (imaginary) optical or absorbing poter#idP would C(t=2kr) have the same Fourier decompositions; i.e., one can
accomplish but is real valued. ThusHfis real (as it is in the infer correlation function information corresponding ti 2
present and many other applications), eq 4 involves only real iterations from the result & iterations. This is similar in spirit
objects. to a related trick in ordinary wave packet dynani&glt is,
Mandelshtam and Taylor introduced this approach, and however, not as general as the ordinary wave packet dynamics
coupled it with filter diagonalization (FB ideas to obtain a  trick.) Therefore spectral analysis ofdg|q«[)] as opposed to
useful method for obtaining resonance positions and decay C(t=kr) = [G|qk[]) can lead to significantly better resolution.
widths12-14 Equation 4 can also be interpreted as being a rule  If only a relatively small number of resonances are of interest,
for generating the real pam, of a wave packet at time= (k we find it useful to employ initial conditions that target the
+ 1)z, given knowledge of its real parts at timds-{ 1)r and desired resonancé%.The bound state Lanczos calculations
kr, where the underlying Hamiltonian operator that generates automatically provide good initial conditions for targeting the
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resonance states: it is possible to converge many energy levelsSTABLE 2: Selected Energy Levels from the Present
above the dissociation threshold, and to determine the corre-Calculations Compared with Those of Mussa and Tennyson

sponding “eigenstates” as already described in section IIB. Of T)°e
course, these are only eigenstates in relation to the finite grid energy/cm!
and basis set representation employed. (Such states and their |evel no. present MT presert MT
variation with grid or box size are used in stabilization 518 43293.15 43293.23 —0.08
approaches to resonancés 3¢ If subsequently propagated on 519 43326.78 43326.90 012
a grid that includes absorption of outgoing components, these 520 43328.68 43328.71 —0.03
states will decay. 521 43344.85 43344.85 0.00
In many instances we propagated individual Lanczos-based 522 43354.04 43354.05 0.01
eigenstates. Another approach is to construct a superposition 538 43752.09 43752.11 —-0.02
of Lanczos states with energies in a desired region. Some care 539 43755.71 43755.73 —0.02
is required in constructing the superposition because sometimes 540 43776.08 43776.13 —0.05
there are resonance interactions such that the sum of two gi% ig;gg'ég g;gg'gg :g'éi
energetically close Lanczos states leads to an object without ' ’ ’
localization in the main interaction region. (See also the 558 44197.28 44197.26 0.02
discussion of the bound state results in section 1lIA.) To ggg jﬁ%-ég ijg(l)g-gg :8-32
minimize this effect, we consider the overlap of a given Lanczos 561 44235 45 44935.47 —002
state with its lower energy nearest-neighbor within the interac- 562 44258.64 44258.65 —0.01
tion region, e.g., the overlap is evaluated only over OH bond
distances less than 6.4Of course the overlap over the entire ggg jig?g";g ijggg'% _0'%500
configuration space should be zero or, with our numerical 570 4440441 4440447 —0.06
eigenstates, almost zero.) If this overlap is negative, then the 571 44415.22 44415.24 -0.02
current Lanczos state is multiplied byl before being added 572 44433.11 44433.25 —-0.14
to the superposition to avoid cancellation of amplitude in the 578 4455232 44552 42 ~0.10
interaction region. This approach allows construction of a 579 44559.94 44559.97 —0.03
superposition state with significant amplitude in the interaction 580 44568.40 44568.43 —-0.03
region and reasonable intensity in the most important resonance 581 44575.40 44577.56 —2.16
states. Of course, this phase convention may then lead to 982 44589.81 44589.94 —0.13
superposition states with relatively little weighting associated ggi ﬁggi'%g ﬁggg'g? :é'gg
with very short-lived resonances that have signficant amplitude 585 44666.96 44668.83 187
in the extended regions of configuration space. Other superposi- 586 44706.01 44710.32 —4.31
tions with different phases can be considered. As a consistency 587 44720.70 44723.54 —2.84
check, the information obtained in a superposition propagation 588 44r22.71
must, of course, be consistent with or complement the results  aThe energies are reported relative to the potential minimum of water
of various individual state propagations. as the zero of energy. (The zero-point energy gbkb 4647.43 cmt.)

A summary of our overall approach to obtaining resonance . . .
information may be useful. First, a (grid) representation of the than this threshold. [Subtracting out the zero-point energy of
Hamiltonian operator, similar to that employed in the bound 4647.4 cm*, Do(OH+H) = 40 079.5 cm*] On the basis of
state calculations, is adopted (section I1A). Suitable initial several large-scale Lanczos determinations of the bound states,

vectors are chosen, based on the bound state calculations, tha#/@ estimate fod = 0 and even exchange H atom symmetry
we believe contain appreciable resonance character. The initialthat there are 588 bound states. Table 1 lists the grid and basis
conditions are iterated (or propagated) according to eq 4, the S€t parameters for our most ambitious calculations, correspond-
damped Chebyshev iteratidhhich is very similar in spirit ~ ing to Hamiltonian matrices ranging in dimension from 1:28

to propagating a wave packet in time as discussed above andl® to 3.90><.106. Te}ble 2 lists selected energy levels from our
elsewherés The autocorrelation function is formed from the Pest calculation, which corresponds to parameter set J-3 in Table
iterates and analyzed with the Prony method to obtain the 1. The root-mean-square deviations between all 588 energy
resonance positions and decay wicthi actual resonance wave  |€vels from our best (J-3) calculation and the parameter sets
functions are also desired, additional propagations involving a R-1, J-1, and J-2 are 0.11, 0.06, and 0.01"tnThe largest
Fourier transformation, eq 9, of the evolving vector iterates must Magnitude deviations of any single energy level from the R-1,
be carried out. There are clear parallels with iterative matrix J-1, and J-2 results with respect to the J-3 levels are 1.56, 1.37,
eigenvalue methods: eqs 4 and 9 can be compared with eqgs fnd 027 cml. We believe th.at_our.energy_levels are converged
and 2. to within 1 cnt?, although it is still possible there could be

Typically, about 50 008150 000 Chebyshev iterations were SOMe slightly larger uncertainty pertaining to the very highest
required for each initial condition considered to adequately two levels (which are associated with the largest magnitude

resolve the relevant resonance parameters. The calculation&/€Viations). . ,
range in computational time from 1 to 3 days on a 667 MHz, Mussa and Tennyson (M9 obtained accurate estimates of

Compag XP1000 workstation using the parameter set J-4 in the first 580 levels. Table 2 compares our results with selected
Table 1. energy levels from their calculations. Our best results for the

first 580 levels have a root-mean-square deviation of 0.08'cm
from the MT results, and the maximum absolute deviation for
any one energy level is 0.65 cth This excellent level of

A. Bound States.Relative to the bottom of the 4@ potential agreement is reflected in Table 2. Also included in Table 2 are
minimum, the energy of OHfx=joy=0) + H is 44 726.9 cm! the remaining 7 bound states (58387) obtained by MT. (The
on the 1A surface of Ho et al.Bound states have energy less 588th state was found not have an energy below the threshold

I1l. Results
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Figure 2. Contour maps { = 10%) of yp* = 2712(1583 £ 584),
Compare with states 583 and 584 in Figure 1.

(whether it isy™ or ~ is immaterial and depends on phase

Rog (ag) conventions), shown in Figure 2a, is very localized in the
Figure 1. Contour maps of wave functions for states 5&B6. The interaction region whereas the other superposition state, shown
HOH bond angle has been fixed @t= 105’ to generate the contour N Figure 2b, corresponds to significant extension of the OH
maps. bonds. A similar interpretation can be made of states 585 and

586, although they are more energetically separated than states
in the MT calculations.) MT carried out careful convergence 583 and 584. (We assumed equal mixing of the eigenstates. Of
checks and concluded that these states were probably not wellcourse a variety of mixings could be considered to obtain the
converged, and therefore it is not surprising that the presentcleanest decomposition.)
calculations can deviate by up to nearly 7 @nfrom their States 587 and 588 are displayed in Figure 3, a and b. We
results. employed our best parameter set, J-3, to compute these states

The highest bound states are particularly difficult to converge because they can be even more extended than state$861
and are responsible for the necessity of large grids as in Tablelt is clear from the figure that state 587 is remarkably extended,
1. Some insight into the reason for this is provided by an with significant lobes centered neBoy = 9 &. (IRon= 5.3
inspection of the eigenfunctiong;". It suffices to determine a for this state.) State 588 is more tightly bounB4y1= 5.0
the eigenfunctions 581586 at the J-1 parameter set level, since ay), but does have some extended state character. States 587
we find that each of these states is converged to better that 0.003and 588 lie within just 5 cm! of the OH+ H threshold. It is
cm~1 with this parameter set. Figure 1 displays contour maps conceivable that a more extensive calculation, with grid extents
of the eigenfunctions for states 58%86 in terms of the two even beyond those in Table 1, might result in at least one of
OH distancesRon and Ro, with the HOH anglep, fixed at these states (or perhaps a superposition of these states) being
105. (We use spline interpolation of the wave functions inferred in the resonance (above threshold) regime. We believe, however,
with our Jacobi-based grids.) With the exception of state 582, because all the bound state parameter sets in Table 1 unambigu-
one sees that quite large extensions in the two bond distanceusly yielded 588 levels that this is probably not the case. (The
can occur. As we will see later in the case of the resonances,approximations to states 587 and 588 calculated at the smaller,
there can be angular variation in the wave functions. However, J-1 grid level were actually quite similar in spirit to those in
one can calculate the average value of the OH bond distanceFigure 3, although the degree of mixing between the tightly
[RonGland its associated standard deviation or spreag,from bonded and extended parts was more even.) However, such near-
each eigenstate including all coordinates and angles to verify threshold details are probably quite sensitive to minor variations
that these states are extended. We find that state 582, as mighin the potential and a more thorough investigation would be
be expected from Figure 1, is rather compact wilRo(O+ very interesting.
oon) = 2.2 £ 0.5 . States 581, 583, 584, 585, and 586 are B. Resonance StateS'he Chebyshev iterations were carried
indeed extended since all hallRopranging between 2.5 and  out with the grid, basis set, and absorption details outlined in
3.1 &, and spreadson ranging from 0.9 to 1.7@aWe can also Table 1. The initial conditions for the Chebyshev iterations were
decompose these wave functions into more tightly bonded andtaken from the eigenvectors above the dissociation threshold
extended components. For the case of states 583 and 584, fomferred from the J-1 Lanczos calculations, as outlined in section
example, contour maps associated with the simple superpositiondIC. The somewhat larger, J-4 grid, including absorption, was
wE = 27121583 £ 1584 are displayed in Figure 2. This type used in the propagations. By choosing the “moderate” J-4 grid
of decomposition is one means of deducing approximate, zero-it is possible that some very extended resonances will not be
order eigenstates that are mixed by some possible resonanceadequately described. However, the J-4 grid allowed us to carry
interaction or perturbation. It has been used widely in intramo- out numerous calculations of the resonances and their nature
lecular dynamics work, including of course the analysis of the that would not have been easy to do with significantly larger
local modes in wate¥? 34 It is clear that one such superposition grids.
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Figure 3. Contour maps{ = 105°) of eigenstates (a) 587 and (b)
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TABLE 3: Resonance Energies and Decay Widths

resonance energy/crh width/cnr?

1 44739.9 0.38
2 44751.6 0.22
3 44761.6 0.075
4 44777.8 9.0

5 44794.6 0.50
6 44799.6 3.2

7 44815.6 2.9

8 44830.8 0.82
9 44832.0 53
10 44846.8 0.01
11 44867.8 0.47
12 44901.2 0.16
13 44932.2 8.0
14 44936.6 0.39

2The resonance energies are reported relative to the minimum

potential energy of bD.

We focused on resonances within the first 250 émbove
threshold. In Table 3 we list energies and decay widths of the in better agreement with the RRKM estim&t€’ However, a
14 resonance states that we identified. In addition to calculationssignificant number of resonances have energy either trapped in
with the absorption strength in Table 1, we also carried out the nonreactive bending mode and/or distributed between the
calculations with half this strength to verify the robustness of two OH stretches, which probably leads to small decay widths.
the resonances. These results suggest that our resonanc@ur result here is also similar in spirit to results obtained for

positions are probably accurate to within 1

©mThe widths
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Figure 4. Resonance decay widths as a function of energy (relative
to the bottom of the KD well), indicated as solid circles. An estimate
of the decay width based on RRKM theory ideas is displayed as solid
lines.

of p obtained does not differ substantially from comparable
estimates of the actual bound state density just below the
threshold.) Note that our resonance states all have even hydrogen
atom exchange symmetry and so that the density pertains to
just even states. Since the reaction is barrierleés) is taken

to be the number of open OH vibrationotation statesiop,

jon) at energyE. To be consistent with the symmetry restriction

of the reactant densitiN(E) is estimated based on just one of
the two possible OH product channels. Over the first 250%cm
above threshold, jusioy = 0 is open and only the first by

can contribute tdN(E). With a few exceptions, the resonance
decay widths in Figure 4 tend to be lower than the RRKM
estimates. The average quantum resonance decay width2s
cm1, which contrasts with the RRKM estimate ranging from
2.3 t0 9.4 cm’. The energy regime in question corresponds to
the limit of nonoverlapping resonances since the average energy
spacing iso~! ~ 15 cnTl, i.e., 7 times larger than the average
guantum decay width. Even in this nonstatistical limit one might
have expected that the average quantum decay width would be

HOCI 2> and HCO and HNG?8 Of course another possible

are more difficult to converge, and appear to be converged to source for the discrepancy between our average decay width
within 20% with the exception of the very smallest and very and simple RRKM theory is that we may not have found all
largest widths which could be have slightly larger uncertainties. the resonances with relatively large decay widths. Unfortunately,
Figure 4 displays the energies and widths (solid circles) and, the proper description of very fast decaying resonances will
for comparison, a decay width based on RRKM theory ideas presumably require calculations based on much larger grids (e.g.,
(solid line). The RRKM estimate is taken from the standard the J-3 parameter set of Table 1 or larger) because we expect

expressiofP

N(E)
Irrem = m

(10)

whereN(E) is the sum of states at a transition state a(t) is
the density of states associated with the reactants. The densityhigh degree of bending excitation, angles that are smaller than
p(E) is inferred from our resonance energies (Table 3) to be the equilibrium bond angle for the water molecule (90&an
0.068 &+ 0.003 states/crt. To make this estimate, we con-
structed the sum of states for our resonances and fit the resultand its spread is 41lindicating significant bending excitation.
to a line. The slope of the line is them (With only 14
resonances in the energy interval, it is not possible to determineis ~20°.) In general, the wave functions are somewhat less
with any accuracy an energy variation in the density. The value compact at the smaller angles, probably because these geom-

such states to be very extended in character.

We now turn to a qualitative discussion of the nature of some
of the resonance states listed in Table 3. The wave function for
the lowest energy resonance (resonance 1 in Table 3) is depicted
in Figure 5 at two different HOH bond angle®,= 105° and
80°. Because this and most other resonance states exhibit a fairly

be important. The average valueéfor this resonance is 102

(The spread ir¥ associated with no or little bending excitation
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Figure 5. Contour maps of the first resonan&&= 44 739.9 cm?*, I'

= 0.38 cn1?) wave function Table 3 at two different bond angles, (a)
6 = 105 and (b)6 = 80°.

etries are more conducive to the dissociation of an H atom. The
striking aspect of resonance 1, however, is how compact it is,
particularly in comparison with some of the highest excited — :
bound states in Figures—B. We suspect that the continuum
regime analogues of the spread out bound states will be fast- Ron ()

decaying resonances that are both difficult to stabilize theoreti- Figure 6. Contour maps of the fifth resonance € 44 794.6 cm?,
cally and to observe experimentally. Resonances 4 and 13 inT = 0.50 cn7!) wave function Table 3 at three different bond angles,
Table 3, we have verified, do tend to have significant extended (@) 6 = 105’ and (b))¢ = 80° and (c)6 = 60"

characterand they are the shortest lived resonances we have
found. (They are also probably the least well converged
regarding grid details.).

There are some resonance states that we find particularly
interesting. The one “hypersphericlitesonance that we found
is resonance 5. (A hyperspherical state is one that would be
best assigned in terms of a polar coordinate system based on
the two bond distances§.Figure 6a-c shows contours of the
wave function withd fixed at 105, 8C°, and 60, respectively.
(The average value @f for this resonance is 94and its spread
is 31°.) What is most interesting here is that at angles near the
equilibrium bond angle of water, this can be characterized as a
“square state” or as a state with both hyperspherical and local
mode character. At the smaller angles, however, resonance 5 is
nearly a pure hyperspherical state.

A particularly interesting local mode resonance, resonance
7, was found and it is depicted in Figure 7a. This state, like all
previous resonance and bound states discussed so far, arose from
an even H atom exchange calculation. It is a straightforward
matter to carry out additional, odd H atom exchange calculations _
and locate the companion resonance for this state, which iszgg;‘zz- ccm?n{“ou—rzmggsngl):a%gii)solfath: d7i:1h resonance ;é?tt?s(iows
shown in Figure 7b'. Addition and subtractf® of the§e t.WO . asimilar staté obtained from a calcurIJat?c,m corrﬁ)asponding to odd H atom
Symmetry _States yl_e|d§ the pure local mpde _eXCIta_tI(_)nS IN exchange symmetry. The sum and difference of the states in (a) and
question—displayed in Figure 7, c and d. While a little difficult () are depicted in panels ¢ and d.
to see, this local mode excitation corresponds to 14 quanta
(nodes) along one OH bond and, more clearly, one quantum ofwould be especially gratifying if some resonances near threshold
excitation in the other OH bond. Whereas most of the resonanceswere found experimentally. Of course, it is doubtful that the

Rom (ap)

Ron (20)

we have found have significant spreadsfimnd complicated
nodal patterns when plotted in terms @fthis resonance was
found to be mostly a zero-point bending state.

IV. Concluding Remarks

specific resonances we found will actually be present at the
corresponding experimental excitation energies. While the
potential employed was based on accurate ab initio Uktis,

not of “spectroscopic” accuracy. On the other hand, being a
global surface, it should describe the dissociation process

We hope that these calculations of the high-lying bound states reasonably well. We therefore believe our results are indicative

and resonance states of water will stimulate further research.

Itof the type of resonances (and bound states) that will exist near
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threshold. Also useful would be more theoretical work to map

J. Phys. Chem. A, Vol. 105, No. 12, 2002641

(14) V. A. Mandelshtam, V. A.; Taylor, H. Sl. Chem. Phys1997,

out the possible spectroscopic pathways, in terms of transitions19% 6756.

through intermediate states, that would permit experimentalists

(15) Gray, S. K.; Balint-Kurti, G. GJ. Chem. Phys1998 108 950.
(16) Hartke, B.; Janza, A. E.; Karrlein, W.; Manz, J.; Mohan, V.;

to access such resonances. Finally, more work needs to be don€chreier, H.-JJ. Chem. Phys1992 96, 3569.

to fully understand the threshold region, in particular to see if
there are additional, faster decaying resonances.
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