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A theoretical study of the highest bound states and some of the lowest energy resonance states of water in its
ground electronic state, X˜ ) 11A′, and with zero total angular momentum, is presented. The majority of our
calculations correspond to the even symmetry block with respect to hydrogen atom exchange. An accurate ab
initio based potential surface is employed. The Lanczos method, applied to a large grid representation of the
Hamiltonian, is shown to be a straightforward method for obtaining the bound state energy levels. Selected
eigenfunctions are also determined and several of those near the dissociation threshold are quite extended.
Resonance states just above the dissociation threshold are characterized with the aid of damped Chebyshev
iterations. Among the resonances observed are those with hyperspherical and local mode character.

I. Introduction

The ground electronic state of water, H2O(X̃)11A′), is of
fundamental interest. Experiments can now access highly
vibrationally excited states of water,1 and the low-lying reso-
nance states may also prove to be accessible.2 Potential energy
surfaces based on high-quality ab initio data3,4 are also available.
Theoretical methods for the determination of vibration-rotation
states are now sufficiently advanced that it is possible to
calculate many highly excited states of water.4-9 We present
the results of detailed theoretical calculations on the nature of
the bound and resonance states of water near the OH+ H
threshold that we hope will motivate both future theoretical and
theoretical work.

Two iterative techniques, the Lanczos method10,11 for the
bound states and damped Chebyshev iterations12-15 for the
resonance states, are applied to the accurate, ab initio based
H2O potential surface of Ho et al.3 Mussa and Tennyson5,6

previously presented an impressive quantum study of many
rovibrational states employing the same potential surface.
Another related work on water is a detailed study of 2D and
3D bound and resonance states, employing an empirical potential
surface, by Hartke et al.16 By converging and analyzing the
highest bound states and low-lying resonances, our work
complements and extends this earlier work.

Section II outlines our methods and computational details,
section III discusses the bound and resonance state results, and
section IV concludes.

II. Methods

The problems of determining bound and resonance states
involve similar considerations. One must decide on the repre-
sentation, i.e., what coordinate system and basis set or grids
are to be employed. One must also decide on the actual method

of determining the relevant properties (e.g., eigenvalues) of the
Hamiltonian operator in the representation. There are numerous
theoretical approaches to obtaining excited ro-vibrational
states.5,8,9,17 One approach, as in the work of Carrington and
co-workers,8,9 is to use relatively primitive and large grid or
discrete variable representations (DVRs),18 coupled with an
iterative matrix eigenvalue method such as the Lanczos
method.10,11This primitive grid approach can, by its egalitarian
nature regarding the problem representation, describe states that
are extremely exited and distorted. However the matrices
involved are large and hence the need of an iterative matrix
eigenvalue method. A recent comparative study of bound state
methods in relation to determining all the vibrational states of
HOCl confirms this point.19 (See also the interesting comparative
study in ref 9.) Such approaches can require additional effort
or more sophisticated considerations to obtain eigenfunctions.
See refs 20-22 for some interesting recent developments on
inferring eigenstate information as well. Section IIA outlines
our basic representation of the problem which is common to
both our bound state and resonance work, section IIB outlines
how the bound states were determined (Lanczos method), and
section IIC outlines how the resonance states were determined
(damped Chebyshev iterations).

A. Representation. We performed bound state (Lanczos)
calculations within both Jacobi and Radau coordinate5,7,23

representations. Within each representation we considered a
variety of grid and basis set sizes. Jacobi and Radau coordinates
lead to very similarJ ) 0 three-atom Hamiltonians. The Jacobi
coordinates employed areR, r, andγ, whereR is the distance
from O to the H2 center of mass,r is the H2 internuclear distance,
andγ is the angle between the vectors associated withR andr.
Radau coordinates involve two distancesR1 andR2 and an angle
R that can be taken to be similar to (but not exactly the same
as) the two OH bond distances and associated bending angle.23

One expects a Radau coordinates representation would be more
computationally efficient (e.g., require smaller Hamiltonian
matrices) for describingmostof the vibrational states of water.
The highest energy bound states and the resonance states,
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however, can be either very extended and/or mixed in character.
Thus, any representation used to obtain these states will involve
large, dense grids. We found that in this limit the Radau system
is not significantly more advantageous than the Jacobi one.
Jacobi coordinates also allow one to easily impose even or odd
exchange symmetry with respect to the hydrogen atoms. (One
may also impose symmetry with grids based on symmetrized
Radau coordinates.)5,7 The resonance state (damped Chebyshev)
calculations were carried out in Jacobi coordinates.

Both iterative approaches used (sections IIB and IIC) require
repeated evaluations ofH‚q, whereq is a real vector andH is
the corresponding Hamiltonian matrix representation. As in
previous work,15 the Jacobi representation is based on evenly
spaced grids inR and r, and a (normalized) Legendre basis,
Ph j(cosγ). The components of the vectorq are thus indexed by
iR, ir, and j, denoting the specificR, r grid point and thejth
Legendre polynomial. Even or odd hydrogen exchange sym-
metry corresponds to including only even or odd Legendre
polynomials in the basis. Cutoff energies are applied to both
the potential and centrifugal terms of the Hamiltonian.15 Fast
Fourier sine transforms are used to evaluate theR andr kinetic
energy terms, and the effect of the potential on a vector is
evaluated via transformation to the corresponding cos(γ) grid
representation, multiplication by the potential points on the grid,
and back transformation to the Legendre representation.15 The
bound state calculations carried out with the Radau coordinate
representation involved an almost identical treatment of the
evaluation ofH‚q. See Table 1 for the details of several grid
and basis set choices we have explored.

B. Lanczos Method for the Bound States.The Lanczos
method10,11 involves application of the following three-term
recursion to generate the various Krylov vectors{qk}

whereI is the identity matrix. Equation 1 is initiated with an
arbitrary, normalizedq1 and â0 ≡ 0. The real numbersRk )
〈qk|H|qk〉 andâk ) 〈qk|H|qk-1〉 are generated during the course

of the iterations in an economical manner involving no additional
matrix-vector products. At any stageM, one can form a
tridiagonal matrixT with the Rk as diagonal elements and the
âk as the nonzero off-diagonal elements. Diagonalization ofT
yields estimates of the eigenvalues ofH. In exact arithmetic,
the Krylov vectors generated via eq 1 are orthonormal but in
practice round-off errors destroy this property. This much-
discussed aspect of the Lanczos method leads to complications,
e.g., multiple copies of good eigenvalues and spurious or ghost
eigenvalues. Nonetheless, as discussed by Cullum and Wil-
loughby,10 one may apply checks on the eigenvalues ofT to
filter out the incorrect eigenvalues. In this work, we used the
conceptually simpler procedure of comparing sets of eigenvalues
obtained at stageM with one or more previous sets generated
at stagesM′ < M. (This procedure was also used in a
determination of all the bound states of HOCl.)19

If cn is an eigenvector of theT corresponding to some good
eigenvalue ofH, En, the corresponding eigenvectorvn of H can
be approximated by

whereN is a normalization constant such that〈vn|vn〉 ) 1. It is
interesting to note that ifc1

n ) 1, then a scalar form of eq 1,
with theqk replaced byck

n andH replaced byEn, can be used
to generate theck

n in eq 2. See also ref 20 for a related, but
different approach. Unfortunately, for large problems such as
the present one, it is not practical to keep all theqk in memory,
or even to store them all on external disk. If eigenvectors are
desired, an additional Lanczos calculation is therefore required
to regenerate theqk and to construct one or more selected
eigenstates according to eq 2. (If many eigenvectors are desired,
more than one extra Lanczos calculation might be needed since
it may not be possible to store simultaneously many different
vn.) The loss of orthogonality of the Krylov vectors during the
course of the Lanczos iterations leads to some interesting
properties of the approximate eigenvectors given by eq 2. For

TABLE 1: Grid a and Related Details

Bound State Calculations

Jacobi Coordinates (R, r, γ)
J-1 Rmin ) 0 a0 Rmax ) 12.5 a0 NR) 179

rmin ) 0.5 a0 rmax) 13.5 a0 Nr ) 179
j ) 0, 2, ..., 78 (40 even exchange
symmetry Legendre polynomials in cosγ)

J-2: Rmin ) 0 a0 Rmax ) 14.5 a0 NR) 209
rmin ) 0.5 a0 rmax) 15.5 a0 Nr ) 209
j ) 0, 2, ..., 98 (50 even exchange
symmetry Legendre polynomials in cosγ)

J-3: Rmin ) 0 a0 Rmax ) 17.8 a0 NR) 255
rmin ) 0.5 a0 rmax) 19.0 a0 Nr ) 255
j ) 0, 2, ..., 118 (60 even exchange
symmetry Legendre polynomials in cosγ)

Radau Coordinates (R1, R2, R)
R-1: Ri

min ) 0.5 a0 Ri
max ) 12 a0 Ni ) 179

j ) 0, 1, ..., 79 (80 Legendre polynomials
in cosR)

Resonance State Calculationsb

J-4: Rmin ) 0 a0 Rmax ) 14.58333 a0 NR) 209
rmin ) 0.5 a0 rmax) 15.66666 a0 Nr ) 209
j ) 0, 2, ..., 78 (40 even exchange
symmetry Legendre polynomials in cosγ)

a Each grid corresponds toxi ) xmin + k∆x, ∆x ) (xmax - xmin)/(Nx + 1), x ) R or r. The potential and centrifugal terms in the Hamiltonian in
all calculations are also cut off at 0.44 au (96 569 cm-1) relative to the bottom of the potential well.b Absorption:A(r) ) exp[-Ca(r - ra)2], r >
ra andA(r) ) 1 otherwise,Ca ) 0.005 a0 - 2, ra ) 10 a0.

âkqk+1 ) -âk-1qk-1 + (H - IRk)‚qk, k ) 1, 2, ...,M (1)

vn ≈ N∑
k)1

ck
nqk (2)
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example, if one considers the standard deviation

one finds that it does not uniformly decrease as the number of
Lanczos iterations M is increased. Rather,σn oscillates and the
best strategy is to monitorσn as one formsvn and to simply
always save thevn that leads to the smallestσn over the course
of the iterations. This procedure worked very well for the present
purposes. In addition, the states obtained were verified to be
orthogonal to between 4 and 9 significant figures, which further
confirms the overall procedure. [Note that in order to visualize
a wave function consistent with a givenvn, one must construct
ψn(RiR,rir,cosγ) ) ∑jVn

iR,ir,j Ph j(cosγ).]
Typically, about 40 000 Lanczos iterations were required to

convergeall the bound states, which for the largest grid and
basis set considered (dimension≈ 3.9× 106) required nearly 2
days of computation time on a 667 MHz Compaq XP1000 (Dec-
Alpha) workstation. (While obviously computationally intensive,
the programming of the approach is extremely straightforward.)

C. Damped Chebyshev Iterations for the Resonance
States.Resonances correspond to complex energiesEn - iΓn/2
of the Hamiltonian, where outgoing boundary conditions have
also been enforced. To find these complex energies, one could
augmentH by an optical potential and employ stabilization
ideas.24-26 Another approach, which is essentially what we
employ here, is a spectral approach based on wave packet
propagation. Assuming that the effect of dissociation on
interaction region dynamics is appropriately mimicked by
absorbing outgoing wave packet components, spectral analysis
of a correlation function can be used to obtain resonance
properties.27,28 The main idea is that a correlation function
inferred from a time-evolving wave packet will then exhibit
damped oscillations, with the oscillation frequencies being
related to resonance energy positions, and the damping factors
being related to the resonance decay widths.27,28The approach
used here, based on Mandelshtam and Taylor’s damped Che-
byshev iteration,12-15 is in this latter spirit.

If HS ) aSH + bS, with aS and bS being chosen to ensure
that the eigenvalues ofHS lie within [-1, 1], a damped
Chebyshev iteration12-15 can be defined as

where the role ofA is to damp away outgoing components of
the iterates,qk, corresponding to amplitude growth in the
dissociation region, thus allowing one to model the effective
dynamics in the interaction region. Given someq1, one setsq2

) A‚HS‚q1 and applies eq 4 to generate the subsequent vectors.
The damping matrixA is diagonal with respect to a grid point
representation, with positive real diagonal elements that are unity
in the interaction region and less than unity outside the
interaction region in order to absorb outgoing products and
prevent artificial reflection effects.A effectively accomplishes
what an (imaginary) optical or absorbing potential24,25 would
accomplish but is real valued. Thus, ifH is real (as it is in the
present and many other applications), eq 4 involves only real
objects.

Mandelshtam and Taylor introduced this approach, and
coupled it with filter diagonalization (FD)29 ideas to obtain a
useful method for obtaining resonance positions and decay
widths.12-14 Equation 4 can also be interpreted as being a rule
for generating the real part,q, of a wave packet at time t) (k
+ 1)τ, given knowledge of its real parts at times (k - 1)τ and
kτ, where the underlying Hamiltonian operator that generates

the wave packet is not simplyH or HS but15

andτ is an arbitrary time step that cancels out of any expression
for an observable. If the various iteratesqk, k ) 1, 2, ...,
consistent with eq 4, are dominated by resonances, then the
autocorrelation functionC(t)kτ) ) 〈q0|qk〉 will be a superposi-
tion of L damped oscillatory terms

(In practice,L values larger than the number of resonances
present are usually used in order to describe background or direct
features.) When damping is applied to the dynamics, this
behavior is consistent with the eigenvaluesfn of f(HS) being
complex numbers:

whereγn g 0. By taking the cosine of eq 7 one may relate the
parametersθn andγn to the actual resonance position and width
of the original Hamiltonian:

If one has a reasonable (not necessarily exact) estimate of the
energy,En, of some resonance, it is possible to obtain a good
idea of the resonance wave function by constructing

where the sum is over all the Chebyshev iterations.
This spectral approach involves inferring the resonance

parameters in eq 6, given a sequence of correlation function
points. An explicit discrete Fourier transform is the best way
of inferring the parameters, but, depending on the duration of
the correlation function sample, the uncertainties associated with
the parameters can be large. An alternative is to treat eq 6 as a
nonlinear fitting problem. We use the Prony method30 to
accomplish the required fits, in a manner similar to that outlined
in the Appendix of ref 28.

If one assumes that theqk can be expanded in terms of a set
of orthogonal oscillatory, decaying resonance states ink, then
it is easy to show that 2〈qk|qk〉 ) C(t)2kτ) + f(k), wheref(k)
corresponds to a sum of decaying exponentials. This implies
that, apart from an extraθ ) 0 term in eq 6, 2〈qk|qk〉 and
C(t)2kτ) have the same Fourier decompositions; i.e., one can
infer correlation function information corresponding to 2k
iterations from the result atk iterations. This is similar in spirit
to a related trick in ordinary wave packet dynamics.31 (It is,
however, not as general as the ordinary wave packet dynamics
trick.) Therefore spectral analysis of 2〈qk|qk〉, as opposed to
C(t)kτ) ) 〈q0|qk〉, can lead to significantly better resolution.

If only a relatively small number of resonances are of interest,
we find it useful to employ initial conditions that target the
desired resonances.28 The bound state Lanczos calculations
automatically provide good initial conditions for targeting the

σn ) (〈vn|H2|vn〉 - 〈vn|H|vn〉2)1/2 (3)

qk+1 ) A‚[-A‚qk-1 + 2HS‚qk], k ) 1, 2, ... (4)

f(HS) ) - p
τ
cos-1HS (5)

C(t)kτ) ) ∑
j)1

L

hj cos(θjk) exp(-γjk/2) (6)

fn ) p
τ(θn - i

γn

2 ) (7)

En ) 1
aS

[cos(θn) cosh(γn/2) - bS]

Γn )
sin(|θn|) sinh(γn/2)

aS
(8)

rn ) N∑
k)1

cos(θnk)qk (9)
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resonance states: it is possible to converge many energy levels
above the dissociation threshold, and to determine the corre-
sponding “eigenstates” as already described in section IIB. Of
course, these are only eigenstates in relation to the finite grid
and basis set representation employed. (Such states and their
variation with grid or box size are used in stabilization
approaches to resonances.)24-26 If subsequently propagated on
a grid that includes absorption of outgoing components, these
states will decay.

In many instances we propagated individual Lanczos-based
eigenstates. Another approach is to construct a superposition
of Lanczos states with energies in a desired region. Some care
is required in constructing the superposition because sometimes
there are resonance interactions such that the sum of two
energetically close Lanczos states leads to an object without
localization in the main interaction region. (See also the
discussion of the bound state results in section IIIA.) To
minimize this effect, we consider the overlap of a given Lanczos
state with its lower energy nearest-neighbor within the interac-
tion region, e.g., the overlap is evaluated only over OH bond
distances less than 6 a0. (Of course the overlap over the entire
configuration space should be zero or, with our numerical
eigenstates, almost zero.) If this overlap is negative, then the
current Lanczos state is multiplied by-1 before being added
to the superposition to avoid cancellation of amplitude in the
interaction region. This approach allows construction of a
superposition state with significant amplitude in the interaction
region and reasonable intensity in the most important resonance
states. Of course, this phase convention may then lead to
superposition states with relatively little weighting associated
with very short-lived resonances that have signficant amplitude
in the extended regions of configuration space. Other superposi-
tions with different phases can be considered. As a consistency
check, the information obtained in a superposition propagation
must, of course, be consistent with or complement the results
of various individual state propagations.

A summary of our overall approach to obtaining resonance
information may be useful. First, a (grid) representation of the
Hamiltonian operator, similar to that employed in the bound
state calculations, is adopted (section IIA). Suitable initial
vectors are chosen, based on the bound state calculations, that
we believe contain appreciable resonance character. The initial
conditions are iterated (or propagated) according to eq 4, the
damped Chebyshev iteration,14 which is very similar in spirit
to propagating a wave packet in time as discussed above and
elsewhere.15 The autocorrelation function is formed from the
iterates and analyzed with the Prony method to obtain the
resonance positions and decay widths.28 If actual resonance wave
functions are also desired, additional propagations involving a
Fourier transformation, eq 9, of the evolving vector iterates must
be carried out. There are clear parallels with iterative matrix
eigenvalue methods: eqs 4 and 9 can be compared with eqs 1
and 2.

Typically, about 50 000-150 000 Chebyshev iterations were
required for each initial condition considered to adequately
resolve the relevant resonance parameters. The calculations
range in computational time from 1 to 3 days on a 667 MHz,
Compaq XP1000 workstation using the parameter set J-4 in
Table 1.

III. Results

A. Bound States.Relative to the bottom of the H2O potential
minimum, the energy of OH(VOH)jOH)0) + H is 44 726.9 cm-1

on the 1A′ surface of Ho et al.3 Bound states have energy less

than this threshold. [Subtracting out the zero-point energy of
4647.4 cm-1, D0(OH+H) ) 40 079.5 cm-1.] On the basis of
several large-scale Lanczos determinations of the bound states,
we estimate forJ ) 0 and even exchange H atom symmetry
that there are 588 bound states. Table 1 lists the grid and basis
set parameters for our most ambitious calculations, correspond-
ing to Hamiltonian matrices ranging in dimension from 1.28×
106 to 3.90× 106. Table 2 lists selected energy levels from our
best calculation, which corresponds to parameter set J-3 in Table
1. The root-mean-square deviations between all 588 energy
levels from our best (J-3) calculation and the parameter sets
R-1, J-1, and J-2 are 0.11, 0.06, and 0.01 cm-1. The largest
magnitude deviations of any single energy level from the R-1,
J-1, and J-2 results with respect to the J-3 levels are 1.56, 1.37,
and 0.27 cm-1. We believe that our energy levels are converged
to within 1 cm-1, although it is still possible there could be
some slightly larger uncertainty pertaining to the very highest
two levels (which are associated with the largest magnitude
deviations).

Mussa and Tennyson (MT)5,6 obtained accurate estimates of
the first 580 levels. Table 2 compares our results with selected
energy levels from their calculations. Our best results for the
first 580 levels have a root-mean-square deviation of 0.08 cm-1

from the MT results, and the maximum absolute deviation for
any one energy level is 0.65 cm-1. This excellent level of
agreement is reflected in Table 2. Also included in Table 2 are
the remaining 7 bound states (581-587) obtained by MT. (The
588th state was found not have an energy below the threshold

TABLE 2: Selected Energy Levels from the Present
Calculations Compared with Those of Mussa and Tennyson
(MT) 5,6

energya/cm-1

level no. present MT present- MT

518 43293.15 43293.23 -0.08
519 43326.78 43326.90 -0.12
520 43328.68 43328.71 -0.03
521 43344.85 43344.85 0.00
522 43354.04 43354.05 0.01

538 43752.09 43752.11 -0.02
539 43755.71 43755.73 -0.02
540 43776.08 43776.13 -0.05
541 43793.18 43793.33 -0.15
542 43808.98 43808.99 -0.01

558 44197.28 44197.26 0.02
559 44204.29 44204.42 -0.13
560 44210.83 44210.89 -0.06
561 44235.45 44235.47 -0.02
562 44258.64 44258.65 -0.01

568 44354.42 44354.47 -0.05
569 44372.75 44372.75 0.00
570 44404.41 44404.47 -0.06
571 44415.22 44415.24 -0.02
572 44433.11 44433.25 -0.14

578 44552.32 44552.42 -0.10
579 44559.94 44559.97 -0.03
580 44568.40 44568.43 -0.03
581 44575.40 44577.56 -2.16
582 44589.81 44589.94 -0.13
583 44649.15 44650.38 -1.23
584 44651.75 44658.61 -6.86
585 44666.96 44668.83 -1.87
586 44706.01 44710.32 -4.31
587 44720.70 44723.54 -2.84
588 44722.77

a The energies are reported relative to the potential minimum of water
as the zero of energy. (The zero-point energy of H2O is 4647.43 cm-1.)
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in the MT calculations.) MT carried out careful convergence
checks and concluded that these states were probably not well
converged, and therefore it is not surprising that the present
calculations can deviate by up to nearly 7 cm-1 from their
results.

The highest bound states are particularly difficult to converge
and are responsible for the necessity of large grids as in Table
1. Some insight into the reason for this is provided by an
inspection of the eigenfunctions,ψn. It suffices to determine
the eigenfunctions 581-586 at the J-1 parameter set level, since
we find that each of these states is converged to better that 0.003
cm-1 with this parameter set. Figure 1 displays contour maps
of the eigenfunctions for states 581-586 in terms of the two
OH distances,ROH andROH′, with the HOH angle,θ, fixed at
105°. (We use spline interpolation of the wave functions inferred
with our Jacobi-based grids.) With the exception of state 582,
one sees that quite large extensions in the two bond distances
can occur. As we will see later in the case of the resonances,
there can be angular variation in the wave functions. However,
one can calculate the average value of the OH bond distance,
〈ROH〉, and its associated standard deviation or spread,σOH, from
each eigenstate including all coordinates and angles to verify
that these states are extended. We find that state 582, as might
be expected from Figure 1, is rather compact with (〈ROH〉 (
σOH) ) 2.2 ( 0.5 a0. States 581, 583, 584, 585, and 586 are
indeed extended since all have〈ROH〉 ranging between 2.5 and
3.1 a0, and spreadsσOH ranging from 0.9 to 1.7 a0. We can also
decompose these wave functions into more tightly bonded and
extended components. For the case of states 583 and 584, for
example, contour maps associated with the simple superpositions
ψ( ) 2-1/2(ψ583 ( ψ584) are displayed in Figure 2. This type
of decomposition is one means of deducing approximate, zero-
order eigenstates that are mixed by some possible resonance
interaction or perturbation. It has been used widely in intramo-
lecular dynamics work, including of course the analysis of the
local modes in water.32-34 It is clear that one such superposition

(whether it isψ+ or ψ- is immaterial and depends on phase
conventions), shown in Figure 2a, is very localized in the
interaction region whereas the other superposition state, shown
in Figure 2b, corresponds to significant extension of the OH
bonds. A similar interpretation can be made of states 585 and
586, although they are more energetically separated than states
583 and 584. (We assumed equal mixing of the eigenstates. Of
course a variety of mixings could be considered to obtain the
cleanest decomposition.)

States 587 and 588 are displayed in Figure 3, a and b. We
employed our best parameter set, J-3, to compute these states
because they can be even more extended than states 581-586.
It is clear from the figure that state 587 is remarkably extended,
with significant lobes centered nearROH ) 9 a0. (〈ROH〉 ) 5.3
a0 for this state.) State 588 is more tightly bound (〈ROH〉 ) 5.0
a0), but does have some extended state character. States 587
and 588 lie within just 5 cm-1 of the OH+ H threshold. It is
conceivable that a more extensive calculation, with grid extents
even beyond those in Table 1, might result in at least one of
these states (or perhaps a superposition of these states) being
in the resonance (above threshold) regime. We believe, however,
because all the bound state parameter sets in Table 1 unambigu-
ously yielded 588 levels that this is probably not the case. (The
approximations to states 587 and 588 calculated at the smaller,
J-1 grid level were actually quite similar in spirit to those in
Figure 3, although the degree of mixing between the tightly
bonded and extended parts was more even.) However, such near-
threshold details are probably quite sensitive to minor variations
in the potential and a more thorough investigation would be
very interesting.

B. Resonance States.The Chebyshev iterations were carried
out with the grid, basis set, and absorption details outlined in
Table 1. The initial conditions for the Chebyshev iterations were
taken from the eigenvectors above the dissociation threshold
inferred from the J-1 Lanczos calculations, as outlined in section
IIC. The somewhat larger, J-4 grid, including absorption, was
used in the propagations. By choosing the “moderate” J-4 grid
it is possible that some very extended resonances will not be
adequately described. However, the J-4 grid allowed us to carry
out numerous calculations of the resonances and their nature
that would not have been easy to do with significantly larger
grids.

Figure 1. Contour maps of wave functions for states 581-586. The
HOH bond angle has been fixed atθ ) 105° to generate the contour
maps.

Figure 2. Contour maps (θ ) 105°) of ψ( ) 2-1/2(ψ583 ( ψ584).
Compare with states 583 and 584 in Figure 1.
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We focused on resonances within the first 250 cm-1 above
threshold. In Table 3 we list energies and decay widths of the
14 resonance states that we identified. In addition to calculations
with the absorption strength in Table 1, we also carried out
calculations with half this strength to verify the robustness of
the resonances. These results suggest that our resonance
positions are probably accurate to within 1 cm-1. The widths
are more difficult to converge, and appear to be converged to
within 20% with the exception of the very smallest and very
largest widths which could be have slightly larger uncertainties.
Figure 4 displays the energies and widths (solid circles) and,
for comparison, a decay width based on RRKM theory ideas
(solid line). The RRKM estimate is taken from the standard
expression35

whereN(E) is the sum of states at a transition state andF(E) is
the density of states associated with the reactants. The density
F(E) is inferred from our resonance energies (Table 3) to be
0.068 ( 0.003 states/cm-1. To make this estimate, we con-
structed the sum of states for our resonances and fit the result
to a line. The slope of the line is thenF. (With only 14
resonances in the energy interval, it is not possible to determine
with any accuracy an energy variation in the density. The value

of F obtained does not differ substantially from comparable
estimates of the actual bound state density just below the
threshold.) Note that our resonance states all have even hydrogen
atom exchange symmetry and so that the density pertains to
just even states. Since the reaction is barrierless,N(E) is taken
to be the number of open OH vibration-rotation states (VOH,
jOH) at energyE. To be consistent with the symmetry restriction
of the reactant density,N(E) is estimated based on just one of
the two possible OH product channels. Over the first 250 cm-1

above threshold, justVOH ) 0 is open and only the first 4jOH

can contribute toN(E). With a few exceptions, the resonance
decay widths in Figure 4 tend to be lower than the RRKM
estimates. The average quantum resonance decay width is≈2.2
cm-1, which contrasts with the RRKM estimate ranging from
2.3 to 9.4 cm-1. The energy regime in question corresponds to
the limit of nonoverlapping resonances since the average energy
spacing isF-1 ≈ 15 cm-1, i.e., 7 times larger than the average
quantum decay width. Even in this nonstatistical limit one might
have expected that the average quantum decay width would be
in better agreement with the RRKM estimate.36,37 However, a
significant number of resonances have energy either trapped in
the nonreactive bending mode and/or distributed between the
two OH stretches, which probably leads to small decay widths.
Our result here is also similar in spirit to results obtained for
HOCl,25 and HCO and HNO.38 Of course another possible
source for the discrepancy between our average decay width
and simple RRKM theory is that we may not have found all
the resonances with relatively large decay widths. Unfortunately,
the proper description of very fast decaying resonances will
presumably require calculations based on much larger grids (e.g.,
the J-3 parameter set of Table 1 or larger) because we expect
such states to be very extended in character.

We now turn to a qualitative discussion of the nature of some
of the resonance states listed in Table 3. The wave function for
the lowest energy resonance (resonance 1 in Table 3) is depicted
in Figure 5 at two different HOH bond angles,θ ) 105° and
80°. Because this and most other resonance states exhibit a fairly
high degree of bending excitation, angles that are smaller than
the equilibrium bond angle for the water molecule (105°) can
be important. The average value ofθ for this resonance is 102°,
and its spread is 41°, indicating significant bending excitation.
(The spread inθ associated with no or little bending excitation
is ≈20°.) In general, the wave functions are somewhat less
compact at the smaller angles, probably because these geom-

Figure 3. Contour maps (θ ) 105°) of eigenstates (a) 587 and (b)
588. The HOH bond angle has been fixed at 105°.

TABLE 3: Resonance Energies and Decay Widthsa

resonance energy/cm-1 width/cm-1

1 44739.9 0.38
2 44751.6 0.22
3 44761.6 0.075
4 44777.8 9.0
5 44794.6 0.50
6 44799.6 3.2
7 44815.6 2.9
8 44830.8 0.82
9 44832.0 5.3

10 44846.8 0.01
11 44867.8 0.47
12 44901.2 0.16
13 44932.2 8.0
14 44936.6 0.39

a The resonance energies are reported relative to the minimum
potential energy of H2O.

ΓRRKM )
N(E)

2πF(E)
(10)

Figure 4. Resonance decay widths as a function of energy (relative
to the bottom of the H2O well), indicated as solid circles. An estimate
of the decay width based on RRKM theory ideas is displayed as solid
lines.

Low-Lying Resonance States of H2O J. Phys. Chem. A, Vol. 105, No. 12, 20012639



etries are more conducive to the dissociation of an H atom. The
striking aspect of resonance 1, however, is how compact it is,
particularly in comparison with some of the highest excited
bound states in Figures 1-3. We suspect that the continuum
regime analogues of the spread out bound states will be fast-
decaying resonances that are both difficult to stabilize theoreti-
cally and to observe experimentally. Resonances 4 and 13 in
Table 3, we have verified, do tend to have significant extended
characterand they are the shortest lived resonances we have
found. (They are also probably the least well converged
regarding grid details.).

There are some resonance states that we find particularly
interesting. The one “hyperspherical”16 resonance that we found
is resonance 5. (A hyperspherical state is one that would be
best assigned in terms of a polar coordinate system based on
the two bond distances).16 Figure 6a-c shows contours of the
wave function withθ fixed at 105°, 80°, and 60°, respectively.
(The average value ofθ for this resonance is 94°, and its spread
is 31°.) What is most interesting here is that at angles near the
equilibrium bond angle of water, this can be characterized as a
“square state” or as a state with both hyperspherical and local
mode character. At the smaller angles, however, resonance 5 is
nearly a pure hyperspherical state.

A particularly interesting local mode resonance, resonance
7, was found and it is depicted in Figure 7a. This state, like all
previous resonance and bound states discussed so far, arose from
an even H atom exchange calculation. It is a straightforward
matter to carry out additional, odd H atom exchange calculations
and locate the companion resonance for this state, which is
shown in Figure 7b. Addition and subtraction33,34 of these two
symmetry states yields the pure local mode excitations in
questionsdisplayed in Figure 7, c and d. While a little difficult
to see, this local mode excitation corresponds to 14 quanta
(nodes) along one OH bond and, more clearly, one quantum of
excitation in the other OH bond. Whereas most of the resonances
we have found have significant spreads inθ and complicated
nodal patterns when plotted in terms ofθ, this resonance was
found to be mostly a zero-point bending state.

IV. Concluding Remarks

We hope that these calculations of the high-lying bound states
and resonance states of water will stimulate further research. It

would be especially gratifying if some resonances near threshold
were found experimentally. Of course, it is doubtful that the
specific resonances we found will actually be present at the
corresponding experimental excitation energies. While the
potential employed was based on accurate ab initio data,3 it is
not of “spectroscopic” accuracy. On the other hand, being a
global surface, it should describe the dissociation process
reasonably well. We therefore believe our results are indicative
of the type of resonances (and bound states) that will exist near

Figure 5. Contour maps of the first resonance (E ) 44 739.9 cm-1, Γ
) 0.38 cm-1) wave function Table 3 at two different bond angles, (a)
θ ) 105° and (b)θ ) 80°.

Figure 6. Contour maps of the fifth resonance (E ) 44 794.6 cm-1,
Γ ) 0.50 cm-1) wave function Table 3 at three different bond angles,
(a) θ ) 105° and (b))θ ) 80° and (c)θ ) 60°.

Figure 7. Contour maps (θ ) 105°) of the 7th resonance state (E )
44 815.6 cm-1, Γ ) 2.9 cm-1) are displayed in panel a. Panel b shows
a similar state obtained from a calculation corresponding to odd H atom
exchange symmetry. The sum and difference of the states in (a) and
(b) are depicted in panels c and d.
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threshold. Also useful would be more theoretical work to map
out the possible spectroscopic pathways, in terms of transitions
through intermediate states, that would permit experimentalists
to access such resonances. Finally, more work needs to be done
to fully understand the threshold region, in particular to see if
there are additional, faster decaying resonances.
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